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The authors examine combined heat and mass transfer in conditions of natural convection 
on a horizontal slab at large Rayleigh number Ra, in the case where variation of density due 
to variation of concentration near the surface is negligibly small in comparison with the 
change of density due to the drop in temperatures. This case is met with in practice, for 
example, during intense heating or cooling of weak solutions or gas mixtures depleted with 
respect to a surface active component, and interacting on the surface. 

i. Analysis of the system of differential equations describing heat and mass transfer 
under steady-state natural convection shows that the presence of mass transfer in the condi- 
tions examined does not influence the heat transfer and the hydrodynamics of the process. 
Therefore, in this case the intensity of heat transfer for Ra >2"107 , as in the case of 
ordinary thermal convection, can be calculated from the relation [i] 

Nu = 0.t8(GrPr) l/a, (1 .1 )  

where the physical properties are chosen at the average liquid temperature. The relation for 
the mass transfer intensity can be obtained from the Leon'tev--Kirdyashkin theory [2, 3] for 
single-phase cellular thermal convection on a horizontal slab. According to [2], in the case 
of thermal convection at Rayleigh numbers in excess of a specific critical value Ra,, a cel- 
lular layer is formed on the horizontal heater surface, and the intensity of liquid motion 
in it governs both the heat transfer and also the mass transfer in our case. 

Figure i, taken from [3], shows a postulated scheme for the circulation of liquid in the 
case of cellular convection in a large volume at large Rayleigh numbers. ~,e theory of [2, 
3] is based on the postulate of constant vorticity of the liquid in the cells. Here it is 
assumed that at the heater surface the horizontal component of the velocity of the external 
flow varies along the surface according to the sinusoidal law 

= v~ sin ~x, (1 .2 )  

where  v m i s  t he  maximum l i q u i d  v e l o c i t y  a t  t h e  h e a t e r  s u r f a c e ;  x =x/Z;  x i s  t he  l o n g i t u d i n a l  
c o o r d i n a t e ;  and ~ i s  t h e  l i n e a r  d i m e n s i o n  o f  t he  c e l l .  From a combined e x a m i n a t i o n  o f  Eq. 
(1 .2 )  and t h e  e q u a t i o n s  f o r  t he  hydrodynamic  and t h e r m a l  boundary  l a y e r s  a r i s i n g  a t  t he  
h e a t e r  s u r f a c e  due to  t he  s w i r l i n g  f low we can o b t a i n  r e l a t i o n s  f o r  the  maximum v e l o c i t y ,  
the size of the cell, and the heat transfer intensity [2, 3] : 

Vm = 0.85(~rglA T/Pr~ 

l = (av Ra,/(AT~g))I/3; 

Nu = 0.49Ra~ -1/n (Gr Pr) 1/3. 

(1.3) 

(i .4) 

(1.5) 

The characteristic length here is the linear cell dimension. When we substitute the critical 
value Ra, =3100 [3] we obtain the value 0.25 for the constant coefficient of (GrPr)~/3 in 
Eq. (1.5). It was shown in [3] that when one allows for the finite size of the thermal boun- 
dary layer thickness one obtains a coefficient of 0.22 in Eq. (1.5). The fact that the heat 
transfer is independent of the characteristic length allows us to compare Eqs. (I.i) and 
(1.5) in ~ich this length is chosen to be different, generally speaking. The comparison 
shows that, although the numerical coefficient of 0.22 is rather large compared with the 
value in the experimental formula, nevertheless the relation between the Nu number and the 
governing parameters in Eq. (1.5) is quite correct, in spite of the approximate nature of 
the theory. 
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Fig. 1 

To determine the mass transfer one must take into account, analogously as was done in 
the analysis of heat transfer [2, 3], the additional equation of the diffusion boundary layer 
with hco =const and give the mass transfer law for the boundary layer: 

d ne ** /dx  = RetStc; ( 1 . 6 )  

Stc = 0.22/(Re**Scm), ( 1 . 7 )  

where Re~* =vo~*/9, Re~ =vol/v; St c =B/vo, and ~* is the material loss thickness. 

From Eqs. (1.6) and (1.7), allowing for Eq. (1.2) it follows that 

Ro~ [ ~  ( l  cos = v ~ V i  - cos ~ "  
= -- ux) ] , ~ 0.59Sc(1-m:~)D sin ~:r 

~le average value of the mass transfer coefficient is 

= 0.53DSc (1-m/~) ]/~7",~/lv. ( 1 . 8 )  

S u b s t i t u t i n g  v m and  l f r o m  E q s .  ( 1 . 3 )  and  ( 1 . 4 )  i n t o  Eq.  ( 1 . 8 ) ,  and  r e d u c i n g  t h e  e q u a t i o n  t o  
dimensionless form, we obtain 

Sh == 0 .49Ra :  1/1~ Pr(l '~-~)/~Le (4-3m)/6 (OrSc) 1/s. ( 1 . 9 )  

F o r  g a s e s ,  w h e r e  t h e  n u m b e r s  P r  ~ S c  %1,  t h e  e x p o n e n t  i n  Eq.  ( 1 . 7 ) ,  a s  i s  t r u e  f o r  t h e  c o r -  
r e s p o n d i n g  relation in heat transfer [3], is 1.2. Substituting m =1.2 into Eq. (1.9) we 
have 

Sh = 0.49Ra~!12Le 1 i~ (OrSc)1 3. ( 1 . 1 0 )  

The expressions for the constants in the theoretical formulas of Eqs. (1.5) and (i.i0) 
have the same accuracy, and therefore the errors in determining these coefficients must be 
the same. Taking this into account, one should choose the constant in Eq. (i.I0) to be the 
same as in the experimental formula for the heat transfer, Eq. (i.i). Then Eq. (i.i0) takes 
the form 

Sh = 0.18LelnS(GrS@/a.  (i. ii) 

L i q u i d s ,  a s  i s  known,  h a v e  t y p i c a l l y  l a r g e  Sc n u m b e r s .  A c c o r d i n g  t o  [ 4 ] ,  t h e  e x p o n e n t  m i n  
Eq.  ( 1 . 7 )  s h o u l d  i n c r e a s e  w i t h  i n c r e a s e  o f  S c ,  and  r e a c h  t h e  v a l u e  m = 4 / 3  i n  t h e  l i m i t  a s  
Sc §  T h e r e f o r e ,  f o r  l i q u i d s  c h a r a c t e r i z e d  b y  n u m b e r s  Sc > 1 0 ,  t h e  v a l u e  o f  m m u s t  b e  c h o s e n  
i n  t h e  r a n g e  1 . 2  <m < 4 / 3 .  T a k i n g  m = ( 1 . 2  + 4 / 3 ) / 2 ,  i n  a c c o r d a n c e  w i t h  Eq.  ( 1 . 9 )  we c a n  o b t a i n  

Sh = O.i8Let/3~ ( 1 . 1 2 )  

F o r  t h e  l i m i t i n g  e a s e  Sc §  (m = 4 / 3 )  we h a v e  

Sh = 0. t8Pr-1/!~(GrSc) l/3. ( 1 . 1 3 )  

T h u s ,  t h e  i n t e n s i t y  o f  mass  t r a n s f e r ,  i n  n a t u r a l  c e l l u l a r  t h e r m a l  c o n v e c t i o n  on a h o r i -  
z o n t a l  s l a b ,  i n  t h e  c a s e  o f  a weak  v a r i a t i o n  o f  d e n s i t y  o f  t h e  medium due  t o  t h e  p r e s e n c e  o f  
a c o n c e n t r a t i o n  g r a d i e n t  a t  t h e  h e a t e r  s u r f a c e ,  i s  d e t e r m i n e d  b a s i c a l l y  b y  t h e  s i n g l e  d i m e n -  
s i o n l e s s  p a r a m e t e r  G r S c .  F o r  Sc ~1  t h e r e  i s  a w e a k  d e p e n d e n c e  o f  t h e  mass  t r a n s f e r  i n t e n -  
s i t y  on L e .  W i t h  i n c r e a s e  o f  Sc t h e  d e p e n d e n c e  o f  mass  t r a n s f e r  i n t e n s i t y  on Le b e c o m e s  
w e a k e r ,  and  a c e r t a i n  d e p e n d e n c e  o f  Nu on P r  a p p e a r s .  I n  sum t h e  v a r i a t i o n  o f  t h e  m a s s  t r a n s -  
f e r  i n t e n s i t y  w i t h  v a r i a t i o n  o f  P r  and  Le o v e r  t h e i r  e n t i r e  p o s s i b l e  r a n g e  i n  p r a c t i c e  d o e s  
n o t  e x c e e d  10-30%.  
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2. The mass transfer process was investigated experimentally using the electrodiffusion 
technique. As the working liquid we used a 0.005NK3[Fe(CN) s] +0.01NK~[Fe(CN) 6] +0.5NHaOH, 
aqueous solution whose thermophysical properties as a function of temperature were determined 
in a manner analogous to that of [5, 6]. The heat and mass transfer intensity was investiga- 
ted on the nickel-plated face of a cylindrical copper heater of diameter 50 mm positioned so 
that the heat transfer surface and the base of the chamber lay in one plane. As the measur- 
ing electrode (cathode) we used the entire heater surface. When current passed through the 
solution there was a unique thermochemical reaction of first order on the surface of the 
electrodiffusion sensor 

Fe (CN)~- + e- -~ Fe (CN)~-. 

The measured electric current in the circuit of the measuring electrode is a measure of the 
mass transfer intensity on the surface of the electrodiffusion sensor. The mass transfer 
coefficient in the limiting diffusion regime (co =0) is calculated from the formula 

= I n t o  / Afc~, 

where llim is the limiting diffusion current; A is the Faraday number; F is the electrode 
area; c~ and Co are the concentration of Fe(CN)~- ions in the unperturbed flow and at the 
wall. In the experiments we simultaneously determined the average heat and mass transfer 
coefficients over the time and the surface. The heat flux supplied to the experimental sec- 
tion was held constant. Because of the smallness of the concentration of active ions and 
the variation in the direction of the gradients of concentrations of Fe(CN)~- and Fe(CN)~- 
ions we can regard the convection that occurred as being thermal. 

Figure 2 compares the experimental data on heat transfer with Eq. (i.i) (the solid line). 
The good agreement of the results is evidence of the clean conditions of the experiment 
(observance of large volume conditions, absence of secondary circulations of liquid, etc.) 
and of the correctness of the thermal measurements. 

In processing the experimental data on mass transfer it is difficult to choose the tem- 
perature at which to determine the thermophysical properties. However, taking into account 
that in this case Sc>>Pr (the diffusion boundary layer thickness is much less than that of 
the thermal) one can see that it is most correct to determine these at the wall temperature, 
and to determine the remaining properties at the average temperature. The parameters in the 
experiments varied in the following range: Gr = (2-100)'106, Pr =2.5-6, Sc =200-1000. 

Comparison of the experimental data with the theoretical relations Eqs. (1.11)-(1.13) 
shows that the experimental mass transfer data are correlated best by Eq. (1.12) (Fig. 3, 
solid line). As one would expect, Eq. (i.II), ~ich describes mass transfer for Sc =1-15, 
somewhat overestimates mass transfer in liquids, while Eq. (1.13), corresponding to infi- 
nitely large Sc~idt number, underestimates it. 

~ms, to calculate mass transfer in liquids under natural thermal convection on a hori- 
zontal surface at large Rayleigh number one can recommend Eq. (1.12), which has been con- 
firmed experimentally. From the correspondence between theory and the experimental data in 
the case of convection in liquids one can postulate that to calculate mass transfer under 
natural convection in gases one can use Eq. (i.ii), which has not been verified experimen- 
tally, however. 

The results of this work can also be regarded as confirming the correctness of the 
Leont'ev--Kirdyashkin theory for thermal convection on horizontal surfaces. 

i. 
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OPTIMIZATION OF THE COI~RESSION OF A 

SPHERICAL I~SS OF GAS 

V. I. Kosarev and A. M. Svalov UDC 533.6.011 

One of the basic problems in the study of combustion processes is that of achieving 
ignition conditions -- high enough temperature and density of the combustible medium so that 
the combustion reaction, once having been started, can effectively continue. To satisfy the 
ignition conditions it is necessary to impose conditions on the characteristics of the energy 
source which initiates the reaction. The description of processes taking place during com- 
bustion requires taking account of various physical factors such as heat conduction, degener- 
acy effects, radiation, etc., and the fact that the material being compressed may be a two- 
component medium -- a plasma. Therefore, an analytic study of the problem in the whole 
volume is practically impossible, and tile problem must be separated into parts, each of ~ich 
can be described by a simpler mathematical model, with a subsequent numerical verification 
of the liraits of admissibility of the simplifying assumptions. Thus, the compression of a 
material is satisfactorily described by the action of a piston on an ideal compressible fluid 

[1-7]. ~le compression efficiency is commonly characterized by the quantity <pR> =.i pdr, 
0 

where p is the density of the medium being compressed. It is expedient to divide the solu- 
tions under study into two groups; the first group consists of the solutions in which <pR> 
reaches the required values when constant input data are used [1-3], and the second group 
includes all the remaining solutions. It is natural to require simple initial distributions 
of the hydrodynamic functions so that the proposed schemes can be realized practically by 
means available. However, taking account of the advance of technical feasibilities and cer- 
tain advantages of solutions of the second group, it is necessary to study all schemes which 
ensure the achievement of large values of <pR>. Cvalov [7] showed that for special distribu- 
tions of the initial values solutions exist for which <pR> becomes infinite at a certain 
instant for a finite mass and a finite expenditure of energy in the compression, whereas the 
use of a compression scheme with a uniform deformation [4-6] leads to a linear dependence of 
<9R> on the added energy for y =5/3. The solutions given in [7] are self-similar near the 
origin, and satisfy a system of ordinary differential equations [8]. This system depends 
on two parameters ~ and 6, and the unknown functions can be written in the form 

= r/(bt~),  zOO = y P ( E ) / R ( % ) ,  • = (s - -  2 + 6 (k  + 1))/y, 
where u, p, and p are respectively the velocity, density, and pressure of a particle, r and 
t are space and time coordinates, and a, b, k, s, • and ~ are arbitrary constants. 
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